top of page

Support Group

Public·34 members

Solution Manual Wireless Communications And Networking Jon W Mark Weihua

Analog circuit sizing is a high-cost process in terms of the manual effort invested and the computation time spent. With rapidly developing technology and high market demand, bringing automated solutions for sizing has attracted great attention. This paper presents APOSTLE, an asynchronously parallel optimization method for sizing analog transistors using Deep Neural Network (DNN) learning. This work introduces several methods to minimize real-time of optimization when the sizing task consists of several different simulations with varying time costs. The key contributions of this paper are: (1) a batch optimization framework, (2) a novel deep neural network architecture for exploring design points when the existed solutions are not always fully evaluated, (3) a ranking approximation method based on cheap evaluations and (4) a theoretical approach to balance between the cheap and the expensive simulations to maximize the optimization efficiency. Our method shows high real-time efficiency compared to other black-box optimization methods both on small building blocks and on large industrial circuits while reaching similar or better performance.

solution manual wireless communications and networking jon w mark weihua

The generation of custom hardware accelerators for applications implemented within high-level productive programming frameworks requires considerable manual effort. To automate this process, we introduce SODA-OPT, a compiler tool that extends the MLIR infrastructure. SODA-OPT automatically searches, outlines, tiles, and pre-optimizes relevant code regions to generate high-quality accelerators through high-level synthesis. SODA-OPT can support any high-level programming framework and domain-specific language that interface with the MLIR infrastructure. By leveraging MLIR, SODA-OPT solves compiler optimization problems with specialized abstractions. Backend synthesis tools connect to SODA-OPT through progressive intermediate representation lowerings. SODA-OPT interfaces to a design space exploration engine to identify the combination of compiler optimization passes and options that provides high-performance generated designs for different backends and targets. We demonstrate the practical applicability of the compilation flow by exploring the automatic generation of accelerators for deep neural networks operators outlined at arbitrary granularity and by combining outlining with tiling on large convolution layers. Experimental results with kernels from the PolyBench benchmark show that our high-level optimizations improve execution delays of synthesized accelerators up to 60x. We also show that for the selected kernels, our solution outperforms the current of state-of-the art in more than 70% of the benchmarks and provides better average speedup in 55% of them. SODA-OPT is an open source project available at -opt.


Welcome to the group! You can connect with other members, ge...
Group Page: Groups_SingleGroup
bottom of page